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The heptagrammal forms derived in part I [Janner (2003a).

Acta Cryst. D59, 783±794] enclose chain segments of

symmetry-related monomers in the GroEL±GroES±(ADP)7

chaperonin complex. A chain reaching the boundary of a

given form either ends, proceeds to a neighbouring form or

has to fold. C� atoms corresponding to these folding points are

identi®ed in each of the nine forms of the chaperonin and are

approximated by ideal positions having integral coordinates

(the indices) with respect to a symmetry-adapted basis. Mutual

structural relations between the indexed positions are derived

in terms of integral scale-rotations (similar to those that leave

the form invariant). The magnesium ions at the binding sites of

the nucleotides ADP and ATP are shown to be symmetry-

related to these folding points. The change in folding

(polymorphism) observed in the cis ring of GroEL arising

from binding to GroES is discussed. In particular, the form

segmentation is conserved in the polymorphic transition. The

geometric and algebraic restrictions imposed on the indexed

positions and on their structural relations by the integrality

condition are presented in an appendix.
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1. Prelude

Before discussing the heptagrammal characterization of the

folding in the GroEL±GroES±(ADP)7 chaperonin complex, it

is opportune to consider the folding problem in the more

general context of the geometry of axial symmetric proteins.

The basic folding of a C� chain occurs at the level of a

monomer, which is eventually assembled into a multimer. In

this process, the minor adjustment of the folded monomer can

usually be neglected. Accordingly, the point-group symmetry

appears to be irrelevant in protein folding.

This is certainly not the case for GroEL, where scaling

symmetries of the multimer, which are normally not included

in the point group, relate the external envelope to the central

channel and imply the existence of geometric correlations

between folding points of the monomer.

Moreover, the changes induced in GroEL on complexation

with GroES are not negligible and substantially modify the

folding of the monomers of the cis ring. In this case, the folding

of the monomer and the geometric properties of the multimer

are mutually dependent.

Investigation of 12 other axial symmetric proteins has

shown that the interplay between multimeric symmetries and

monomeric folding observed in the GroEL±GroES chaper-

onin has a generic character. This is quite natural, because the

folding of the monomer and the geometry of multimer as an

active unit are both essential for the biological processes and
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have therefore been involved together in the evolutionary

selection.

It can therefore be attempted to identify the relevant

folding points of the monomer starting from the symmetry

properties of the multimer or, conversely, to predict the

symmetries of the multimer on the basis of the geometry of the

folded monomer. In the following an attempt is made to

present the typical steps that are possibly involved in these

two complementary approaches.

1.1. Multimeric characterization of the monomeric folding

1.1.1. Molecular forms. The starting point is represented by

the scale-rotational symmetry of the envelope and channel

in terms of indexed molecular forms of the multimeric

quaternary structure of an axial symmetric protein. These

forms are delimited by planes perpendicular or parallel to the

rotation axis and have vertices with integral coordinates (the

indices) with respect to a symmetry-adapted basis. The

following are typical.

(i) Scaling factors which depend on the rotational

symmetry.

(ii) Characteristic ®xed ratios between the inter-planar

distance of delimiting planes parallel and perpendicular to the

axis of rotation. Loosely speaking, these ratios imply a relation

between the height and width of the molecular form.

For example, in GroEL the scaling factors are heptagrammal

and are therefore connected with the sevenfold rotational

symmetry; in the trans ring the height of the monomers is

equal to the radius of the envelope of the multimer. For the

symmetry-adapted basis (a, c) de®ned in the next section, one

has c: a = 1.

1.1.2. Ca positions at form boundaries. In a second step, C�

positions are identi®ed which have the following properties.

(i) A location at/near the boundaries of a molecular form.

Typically, basal positions are found when the delimiting plane

is perpendicular to the axis of rotation and lateral positions for

delimiting planes parallel to the axis.

(ii) Integral coordinates with respect to the symmetry-

adapted basis or, in other words, an ideal position with integral

indices.

(iii) At least a pairwise relation by invertible integral

transformations (typically representing scale-rotations).

1.1.3. Correlated folding points of the monomer. Making

use of the rotational symmetry of the multimer in terms of

monomers, the structural relations between C� positions in the

multimer are expressed as structural relations between C�

positions of a single monomer. The symmetry of the multimer

is encoded in the geometry of these correlated folding points.

This is the approach adopted in the present work: molecular

forms in part I and heptagrammal correlated folding points in

part II.

1.2. Axial symmetric multimer from a folded monomer

It is possible in principle to derive the expected axial

symmetry of the multimer assembled from a given folded

monomer. The self-assembly process certainly involves more

properties than the geometry of the monomer in a C� back-

bone description, which is the only property considered here.

However, the geometric properties substantially reduce the

number of a priori possibilities. In the present approach, only

a limited number of C� positions are expected to be relevant:

those denoted above as correlated folding points, which are

those that become symmetry-related in the assembled

conformation. They predispose the monomer to the symmetry

adopted by the multimer. A number of these positions are

characterized by some extreme property. Much more cannot

be said at present, but it is clear that the path presented in the

previous approach cannot simply be reversed. The insights

gained so far suggest an algorithmic approach. At present, it is

not more than a strategy, the validity of which has not yet been

tested.

1.2.1. Axial direction. The ®rst step of an algorithmic loop is

to orient the monomer with respect to the direction of the axis

of rotation expected for the multimer, taken to be the z axis of

an orthogonal coordinate system. The ®tting of the monomer

into prismatic forms delimited by lateral planes parallel to the

axial direction and by basal planes perpendicular to it can help

to ®nd the z direction. Other dominant secondary structures,

such as �-helices or �-strands, may also suggest possible

solutions. For a chosen orientation, the positions with extreme

values of the z coordinate ®x the height of the monomer or, to

put it better, of its prismatic envelope, which is the same as the

height of the axial-symmetric multimer.

1.2.2. Axis of rotation. A pair of C� positions in the

monomer that are related in the multimer by a planar scaling

transformation have the same z coordinate and are aligned in

a radial direction in the xy plane. Therefore, the intersection

points of straight lines through C� positions at (approxi-

mately) the same height are expected to show, in a projection

along the z direction, a concentration at the axis of rotation.

This should allow ®xation of the location of the z axis, the

cylindrical envelope of the multimer and its central channel.

1.2.3. Polygrammal scaling and rotations. Pairs of C�

positions that are

(i) at the same height z,

(ii) along the same radial direction in the xy plane and

(iii) at maximal and minimal radial distance from the

rotational axis

are expected to be mutually related by a polygrammal scaling.

If so, the scaling factor of their radial distances depends in a

recognizable way on the order of the possible rotational

symmetry. Both rotations and scalings are restricted by the

crystallographic condition imposed by the existence of a

common symmetry-adapted basis. This basis is indeed such

that the elements of a scale-rotation point group are repre-

sented by integral invertible matrices. The axial symmetric

multimer is then generated from the monomer by the

subgroup of rotations.

1.2.4. Molecular forms of envelope and channel. A mole-

cular form of the multimer obtained is constructed which has

delimiting planes perpendicular and parallel to the rotation

axis. If the vertices have integral indices with respect to a



symmetry-adapted basis, the loop of the algorithm is closed.

Otherwise it is necessary to start again.

The validity of this algorithm is based on scaling properties

which, together with rotations, eventually lead to a set of

correlated folding points encoding the geometry of the

multimer in the monomer. In the formulation given above, the

algorithm only indicates a logical possibility. Its practical

formulation will certainly require additional probabilistic

elements. At present, it can be hoped to ®nd cases that are

simple enough to allow a decoding of the cryptogram repre-

sented by a folded monomer.

2. Introduction

In the ®rst part of this work (Janner, 2003a), here denoted as

part I, the architecture of the GroEL±GroES chaperonin

complex has been analyzed in terms of molecular forms

enclosing given segments of a set of polypeptide chains related

by the sevenfold rotation R, a nearly exact symmetry of the

chaperonin-ring structure with a central channel. This leads to

forms consisting of two heptagonal prisms, one external and

one internal, the two being related by a scaling transformation

S. The basic property which justi®es the present work is that

these forms are not only heptagonal but also heptagrammal.

The heptagrammal property of a form requires sevenfold

rotational symmetry and vertices with integral coordinates

(the indices of the vertices of a heptagram) when expressed

with respect to a symmetry-adapted basis set of vectors. In this

basis, R and S are represented by invertible integral matrices.

This property restricts the order of the rotation R and the

scaling factor of S. Technically speaking, the basis vectors

generate a three-dimensional free Z-module M of rank 7, with

R and S automorphisms of M generating the point group of

the form.

A form enclosing a chain segment implies the existence of

folding points at C� atoms near enough to the form boundary.

The aim of the present second part is to identify and to analyze

these folding points or, in other words, to characterize that

part of the molecular folding arising from the con®nement by

the given form. Actually, this perspective reverses cause and

effect, because the form follows from particular folding points

and not conversely. However, the present approach is purely

phenomenological and inductive. It is intended to show that,

with few exceptions, the folding points at the form boundaries

have integral indices and that there are structural relations

between these folding points expressible by integral invertible

matrices, generalizing the few special cases presented in a

further paper (Janner, 2003b). The existence of both proper-

ties explains the symmetry of the forms observed without

implying an understanding of the origin of the symmetry.

As outlined in a previous paper (Janner, 2001), in a mole-

cular crystallographic approach such as the present one, these

structural relations are obtained from elements of a so-called

structural group which has the symmetry group of the system

as a subgroup. This symmetry group includes what in

biochemistry are called non-crystallographic symmetries,

which leave the molecule invariant, at least approximately, but

not the embedding crystal. The elements of the structural

group do not generally leave the molecule invariant nor the

(idealized) backbone description, nor even the whole set of

folding points involved in the form con®nement.

Nevertheless, the knowledge of a structural group is

essential for characterization of the architectural elements of

the molecule. The present case can help to grasp how this is

possible. Once folding points arising from a basal con®nement

(at C� positions near the boundary faces perpendicular to the

sevenfold axis) have been identi®ed, it can be observed that

they appear in a heptagrammal arrangement in the axial

projection and are related by scale-rotations leaving the

Z-module M invariant. Conversely, by considering folding

points at the lateral faces of a given form, it is found that their

projection in a direction perpendicular to the axis ®ts with the

underlying axial Z-submodule.

In other words, integral indices can be assigned to a number

of C� positions which occur at boundary points and their

mutual positions can be related by heptagrammal point-group

transformations. Not all C� positions near the boundaries

possess this property, but there are enough folding points to

justify the heptagrammal properties of the enclosing forms

derived in part I. After some generalities given in the next

section, in x4 this analysis is performed for the forms of the

trans ring of GroEL and in x5 for the cis ring. The corre-

sponding treatment of the co-chaperonin GroES follows in x6.

In x7 the binding of the nucleotides ADP and ATP is

considered in the complexed and in the uncomplexed states of

the cis ring of GroEL. In both cases similar relations emerge

between the positions of the Mg ions and form-folding points.

The results are summarized in x8, where an attempt is made to

gain a ®rst insight in the polymorphism of the GroEL chains.

In an appendix the geometry of the heptagrammal arrange-

ments observed in the various axial projections of the folding

points is ®rst considered, followed by a characterization of

heptagrammal point-group transformations. This appendix is

intended to complement the appendix of part I.

3. Generalities

The analysis of the various forms requires some preliminary

general considerations. While in part I the data of three PDB

®les were considered together, 1grl for the unliganded GroEL

(Braig et al., 1994), 1der for GroEL complexed with ATP
S

(Boisvert et al., 1996) and 1aon for GroEL±GroES±(ADP)7

complex (Xu et al., 1997), here all the positions indicated are

those of the residues found in 1aon. xx6 and 7 also require, of

course, the GroEL cis ring from 1der.

The consistency with part I is ensured by adopting the same

coordinate system and the Z-module basis {a1, . . . , a7} as in

equation (1) of part I,

ak � a�cos k'; sin k'; 0�; ' � 2�

7
; k � 1; 2; . . . ; 6;

a7 � c�0; 0; 1�; �1�

where
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a0 � ÿ�a1 � a2;� . . .� a6� �2�
is oriented along the x axis. This implies that before plotting,

the data of 1aon are ®rst translated to a new origin O by

�x = ÿ78.84 AÊ , �y = 51.59 AÊ and �z with a value ranging

fromÿ4.0 to 0.0 AÊ and rotated around the z axis by an angle 

varying from 11 to 8�. The varying values of �z and 
 take into

account possible local deformations with respect to ideal

positions, as explained in part I. All C� positions at form-

boundary points are approximated by ideal positions with

integral coordinates (rational indices) with respect to a single

Z-module M for the whole GroEL±GroES±(ADP)7 complex.

The ®tting of the data to this Z-module leads to the following

values for the parameters a and c of (1),

a � 70:3 AÊ ; c � a=12: �3�
Rational indices have only a structural meaning for small

integers (say, not much larger than ten in absolute value). For

GroEL and GroES this is only the case if locally different

submodules of M are adopted. In particular, as in part I, the

submodules Mt, Mc and Ms are used for the GroEL trans ring,

for the GroEL cis ring and for GroES, respectively. The

corresponding Z-module parameters are then

Mt : at � a; ct � 3c;

Mc : ac � a; cc � 3�Nc;

Ms : as � �Ea; cs � 2�Nc: �4�
As �N = 4cos' + 6cos2' = 1.1588 . . . and �E = ÿ1 + 2cos' ÿ
2cos2' = 0.6920 . . . are scaling factors of transformations that

leave the Z-module M invariant (see appendix), Mt, Mc and Ms

are indeed submodules. In the ®gures, circles containing

dots indicate the C� positions at form-boundary points and

neighbouring empty circles indicate the corresponding

indexed ideal positions.

While in part I scaling transformations are characterized by

their scaling factor labelled by a capital letter, here these

scaling factors are indicated in their two-decimal approxima-

tion. For example, S�E
is indicated as S0.69 and S�N

as S1.15. The

corresponding exact values can be found in the appendix. This

characterization is only unambiguous for scaling matrices with

small integral entries, as required by a meaningful indexing

of related atomic positions. Following a suggestion by B.

Souvignier, the entries of the scaling matrices considered (and

of their inverse) are of absolute value not larger than 5.

The general procedure is similar to that adopted in part I for

deriving the molecular forms of the GroEL±GroES chaper-

onin. It involves two steps leading to indexing and to structural

relations. For determining the con®ned points these two steps

are applied to the forms one after the other: three for the trans

ring and three for the cis ring of GroEL and three for GroES.

3.1. Indexing

The ®rst step consists of identifying C� positions suf®ciently

well approximated by points with small integral indices at

basal and/or lateral boundaries, which then de®ne corre-

sponding ideal C� positions. The condition on the indices to be

small is essential, but depends on the Z-module basis adopted.

Normally, this basis is the same as for the form considered. In

some cases it is necessary to convert to an equivalent (local)

basis. This set of ideal positions with integral coordinates has a

heptagonal symmetry and is, by de®nition, a heptagram.

Examples of heptagrams observed in GroEL±GroES are

presented in the appendix.

3.2. Structural relations

In a second step Z-module automorphisms are looked for

(denoted as heptagrammal point-group transformations)

which relate points of the given heptagram. Only those

transformations are admitted which have small integral entries

when expressed in the same basis as the points and an inverse

with the same property. In the appendix, heptagrammal

scaling transformations are given as parameterized integral

matrices, together with a general expression for the corre-

sponding scaling factors.

The C� positions connected by scale-rotational point-group

elements are interpreted as correlated folding points. For the

remaining unrelated C� positions, attempts are made to ®nd

alternative geometrical characterizations which still could be

meaningful. In any case a question mark is then justi®ed,

either on the indexed idealization adopted or on having

included these positions in the heptagram.

The ®gure of merit of an assignment depends on the

following.

(i) The discrepancy between observed and ideal positions.

(ii) The simplicity of the heptagrammal structure.

(iii) The value of the rational indices.

(iv) The integral entries of the transformations.

(v) The number of non-trivial structural relations.

This ®gure of merit has not been cast into a formula. It is

only intended as a basis for a qualitative evaluation of the

results derived.

4. Heptagrammal folding in the trans ring of GroEL

4.1. The N-terminal form

Let us begin with the N-terminal form (see Fig. 3a of part I).

The segments enclosed range from the residues Ala2 to

Leu187 of the chains H to N of GroEL given in the PDB ®le

1aon. As shown in Fig. 1(a), four C� positions have been

selected: two basal, A109 and T181, and two lateral, K65 and

D140. The corresponding heptagrammal arrangement has

been marked by lines connecting the ideal positions with

integral indices in the basis (at, ct) indicated in (1) and (4),

according to step 1. Given here are the indices of the positions

labelled in Fig. 1(a). The other set of indices follows by

heptagonal rotations.

lateral : K65 � �1 2 0 0 2 1; 1�t;
D140 � �0 0 0 �1 0 0; 2�t;

basal : A109 � ��1 0 �1 �1 0 �1; 0�t;
T181 � �1 1 2 �1 1 2; 3�t: �5�



In order to derive possible structural relations between these

positions (step 2), it is immediately observed that D140 is

rotationally equivalent to B(2), where B(n) denotes the point

with indices (1 1 1 1 1 1, n)t. The parabolic automorphism Pt of

Mt [already considered in equation (32) of part I and indicated

again in the appendix] transforms B(n) to B(n + 1) and the

scaling Sÿ0.35 (speci®ed in the same appendix) transforms B(1)

to K65. This implies that K65 and D140 are point-group-

equivalent positions, with a structural relation given by

Sÿ0:35Pÿ1
t R3�D140� � K65: �6�

In a similar way B(2) is transformed to B(0) by Pÿ2
t and then to

A109 by the scaling Sÿ0.55, leading to the relation

Sÿ0:55Pÿ2
t R3�D140� � A109: �7�

Therefore, A109 is also point-group equivalent to K65.

The remaining position T181 is not simply related to the

others. Geometrically, it appears along an edge of the star

heptagon {7/2} (shown in Fig. 8 of part I) scaled by a hepta-

grammal factor 0.24698 . . . from one of the vertices. The

indices indicated above have been obtained using this prop-

erty. This scaling, however, is not centred at the origin, so that

it does not imply the existence of a heptagrammal point-group

relation with the other positions, even if it can be expressed in

terms of elements belonging to the point group:

�S0:24�R2 ÿ 11� � 11�Rÿ3PtR
3�D140� � T181; �8�

where 11 denotes the unit matrix.

It is sometimes convenient to indicate the planar scaling

only, considering the corresponding relations as given modulo

the heptagonal rotations and the parabolic transformations of

Mt. Doing so, the ®rst two structural relations derived above

are simply given by:

D140 ' Sÿ1
ÿ0:35�K65� ' Sÿ1

ÿ0:55�A109�: �9�

Acta Cryst. (2003). D59, 795±808 Janner � Heptagrammal characterization of GroEL±GroES±(ADP)7 folding 799

research papers

Figure 1
(a) Selected folding points arising from con®nement in the N-terminal
form of trans GroEL: T181 and A109 at the bases and K65 and D140 at
the lateral faces of the form are indicated by circles containing dots in the
axial and in a perpendicular projection. The corresponding ideal
positions, indicated by open circles, belong to an indexed heptagram.
The dashed lines indicate the existence of integral scaling relations
discussed in the text. The same conventions are also used in the following
®gures. (b) N-terminal form of cis GroEL with folding points at form
boundaries. The lateral folding points are related by planar integral scale-
rotations: E63, K65 at n7 = ÿ1

2 and A2, S43, A133 at n7 = ÿ1. The two
basal positions A109 and E172 at n7 = 0 and n7 = ÿ2, respectively, are
point-group equivalent. The planar indices are related by an integral
scale-rotation and the axial indices by an integral parabolic transforma-
tion. This last type of relation is implicitly implied in the equivalences
mentioned in other ®gures.

Figure 2
(a) Folding points at lateral form-boundaries belonging to the
intermediate form of trans GroEL together with the corresponding ideal
heptagram: all these positions share the same axial coordinate n7 = 3. (b)
The heptagrammal structure occurring in the intermediate form of cis
GroEL consists of basal folding points (D359, L187 and A239) and of
lateral-con®ned folding points (K207, G282, E339 and again L187, even if
the latter represents the transition to the N-terminal form rather than a
folding point). The corresponding ideal positions are all point-group
equivalent. In the axial projection they appear at the vertices of the
extended heptagram discussed in the appendix and shown in Fig. 9.
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4.2. The intermediate form

The intermediate form of the trans ring corresponds to the

apical domain (Xu et al., 1997) and ranges from Leu187 to

Val376. Three lateral C� positions have been selected (A258,

G269 and T357 indicated in Fig. 2a) and four basal ones (E209,

K311, E315 and A340 shown in Fig. 3). All the lateral C�

positions have approximately the same height, ®tting with the

axial index n7 = 3. Two are at the central hole and one at the

vertex of the external heptagonal boundary (see Fig. 2a). Of

the four basal C� positions, three are at the top of the trans

ring (n7 = 4) and one at the lower basis, mid-height of the ring

(n7 = 2).

Starting with the lateral positions, one can immediately

assign to T357 the ideal position A(3), where A(n) has the

indices (�1 �1 �1 �1 �1 �1, n)t. The ideal position of A258 then follows

by the scaling transformation S0.38. The linear scaling

Rÿ3Yÿ0.28R3 transforms A258 into G269, where Y� scales the y

coordinate by a factor � and leaves the x coordinate invariant

(see the appendix),

S0:38�T357� � A258; Rÿ3Yÿ0:28R3�A258� � G269: �10�

These relations allow assignment of the following indices to

the corresponding lateral-con®ned folding points indicated in

Fig. 2(a),

T357 � ��1 �1 �1 �1 �1 �1; 3�t;
A258 � �5 1 3 3 1 5; 3�t;
G269 � �1 0 1 1 �1 2; 3�t: �11�

Moving to the basal positions E209, K311, E315 and A340

shown in Fig. 3, it can be seen in the view along the heptagonal

axis that these positions are arranged according to a highly

symmetric pattern and that K311 follows from the position

A(4) by repeating twice a {7/2} star-heptagon construction

K311 � S2
0:69A�4� � ��9 �2 �6 �6 �2 �9; 4�t: �12�

These indices are fairly high, but still acceptable. Not accep-

table, however, are those which follow for the other basal

points, namely

E315 � �81 �13 75 10 39 52; 4�t;
A340 � � �20 3 �19 �3 �10 �13; 4�t;
E209 � �52 39 10 75 �13 81; 2�t: �13�

These high indices have been computed using the symmetry of

the arrangement. For example, K311 and A340 are in the same

mutual position as the points labelled C0 and ±V3 in the

reverse heptagram of Fig. 9 (compare with the indices of

Table 1 in the appendix). This observation suggests changing

the basis (at, ct) to an equivalent basis (at0, ct0) de®ned by

�at0 ; ct0 � � ��Tat; ct�; �T � 1:3418 . . . �14�
obtained by the scaling transformation T = S2

0:69Sÿ1
0:35. The

indices obtained with respect to this local basis of the

Z-module Mt are quite reasonable,

E209 � �2 1 0 3 �1 3; 2�t0 ;
K311 � �1 2 0 0 2 1; 4�t0 ;
E315 � �3 �1 3 0 1 2; 4�t0 ;
A340 � �1 1 1 0 1 2; 4�t0 : �15�

All these positions are point-group equivalent. Their mutual

relations are independent of the basis chosen for the indices. It

follows that

A340 � Rÿ3Yÿ1
0:28R3�K311�;

E315 � S0:69R�A340�;
E209 � my�E315�; �16�

where Y0.28 denotes a linear scaling in the y direction by a

factor 0.28 . . . and my the re¯ection which changes the sign of

the y coordinate.

4.3. The C-terminal form

The C-terminal form of trans GroEL has segments ranging

from Val376 to Pro525 (or to Lys526 in the uncomplexed

structure determination reported in 1der). The mobile part of

the remaining 23 residues of each chain is missing (Xu et al.,

1997). One basal position (E434) and three lateral positions

Figure 3
Folding points at the two basis faces with n7 = 4 and n7 = 2 of the same
intermediate form of trans GroEL as in the previous Fig. 2(a). In the axial
projection they show a heptagrammal arrangement with points related by
integral scale-rotations.



(K425, N487 and P525) have been identi®ed and indexed (see

Fig. 4a). An additional position (A384) has been included

because it could possibly be point-group equivalent with K425,

as their axial indices differ by two. One ®nds

lateral : A384 � �1 1 0 0 1 1; 5=2�t;
K425 � ��1 2 �3 1 0 0; 1=2�t;
N487 � �0 0 �1 0 0 0; 1�t;
P525 � ��1 �1 �1 �1 0 �2; 1�t; �17�

basal : E434 � �0 �1 �1 0 0 �1; 0�t: �18�

As already mentioned, P525 is not the C-terminus of the chain,

but only the last C� whose position has been determined. It

can safely be assumed that it forms the pivot of the more

mobile tail and can therefore be considered as a lateral

con®ned folding point. It is related to N487, which is also

lateral at the same height, and to the basal E434 at the

interface with the cis ring,

P525 � S0:24Sÿ1
0:80Rÿ2PtR

2�E434� � Sÿ0:24Rÿ3�N487�: �19�

The planar indices of K425 follow from the observation that its

position is scaled from a vertex along the edge of the external

heptagon (Fig. 4a), in a similar way as found for T181 along

the edge of a star heptagon (see Fig. 1a). A384 has the same

planar indices as E434 but a Z-module inequivalent height.

5. Heptagrammal folding in the cis ring of GroEL

5.1. The N-terminal form

As in the trans ring, the N-terminal form of the cis ring

ranges from the residues Ala2 to Leu187, now of the chains A

to G of GroEL. The folding is strongly in¯uenced by the

presence of the co-chaperonin GroES and the con®nement of

the seven chains in a Z-module indexed form is only very

approximate. Dif®culty in indexing point-group correlated

folding positions would therefore be expected. In reality this

indexing is straightforward, even if the discrepancy between

observed and ideal positions is larger than that found so far.

As in the previous case, the two basal positions in a chain

appear to be correlated with the ®ve lateral positions and are

shown together in Fig. 1(b). The residue A2 has been included

(even if strictly speaking it is not a folding point) because it ®ts

nicely at the heptagonal boundary of the central channel. The

indices given are the coordinates with respect to the basis

(ac, cc) of the local Z-module Mc of (4). The parabolic trans-

formation connecting different axial indices n7 is Pc. With

respect to the new basis, this transformation has the same

matrix representation as Pt with respect to the (at, ct) basis [see

equation (33) of part I]. We still write PcA(n) = A(n ÿ 1) for

A(n) with indices (�1, . . . , �1, n)c and in a similar way

PcB(n) = B(n + 1) for B(n) = (1, . . . , 1, n)c.

The positions labelled in the view along the axis of Fig. 1(b)

belong to the chain D. The corresponding indices are

basal : A109 � �2 0 1 1 0 2; 0�c;
E172 � ��1 �1 0 �1 �1 0; �2�c; �20�

lateral : A2 � �0 1 1
2

�1
2

1
2 1; �1�c;

S43 � �1 �1 �1 1 0 �1; �1�c;
K65 � �1 2 0 0 2 1; �12�c;
E63 � �0 6 1 �2 5 3; �12�c;

A133 � �0 1 �3 2 �1 0; �1�c: �21�

If one forgets about A2, a better ®t with these indices would

have been obtained by adopting a slightly greater value for the

basis parameter cc, but we have no justi®cation for doing so.

The same non-integral value of the axial index in K65 and E63

implies non-equivalence with the positions having integral

values and suggests a possible scaling relation between the

two. Both lateral positions E63 and A133 are in a off-centre

scaling relation by a factor 0.2469 . . . along a heptagonal edge.

The remaining structural relations are between point-group-

equivalent positions, easily expressed with respect to B(0),
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Figure 4
(a) C-terminal form of trans GroEL. The two pairs of folding points at the
lateral faces are in integral scale-rotation relations and differ by an
integer in their n7 coordinate: A384 and K425 by �z = 2 and P525 and
N487 by �z = 0. The basal folding point E434 at z = 0 is in a integral scale-
rotation relation with P525 and N487. (b) C-terminal form of cis GroEL.
The folding points at form boundaries occur in two pairs of scale-
rotational related positions of star heptagons (indicated by dashed lines).
There is a planar set with n7 = ÿ1

2 with D473, Q432, P525 and K425 and a
planar set having axial coordinates which differ by an integer: E461 with
n7 = 0, I489, A503 with n7 = ÿ1 and V378 at the form boundary n7 = ÿ2.
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A109 � Sÿ0:69B�0�;
S43 � Rÿ1Sÿ0:35Pÿ1

c B�0�;
E172 � S0:80R3Pÿ2

c B�0�: �22�

5.2. The intermediate form

In this case the segments of the chains A to G range from

Leu187 to Val378. Despite the different folding, the correlated

folding points of the trans and cis intermediate forms have

similar constraints requiring an equivalent local basis (ac0, cc0)

to ensure low indices. In the present case,

�ac0 ; cc0 � � ��Nac; cc�; �N � 0:86294 . . . �23�
The indexed position (1 1 . . . 1, n)c0 is indicated by B0(n), so

that B0(n) = S0.86B(n). The parabolic element Pc0 transforms

B0(n) into B0(n + 1) = Pc0B(n0).

The lateral and the basal folding points ®t into the ideal

positions of a heptagram obtained by extending that given by

the intersection points of the union of two star heptagons

{7/2} [ {7/3} (see Fig. 9). Fig. 2(b) shows how well the two

perpendicular views of the three basal and the three lateral

folding points ®t with the underlying Z-module structure. All

these positions are point-group equivalent with B = B(0). The

following scaling relations are found:

E339 � R3B0��3�;
G282 � Sÿ1

0:69S0:35�E339�;
L187 � Rÿ1Y0:28Rÿ3B0��2�;
K207 � Rÿ1Yÿ0:28R�E339�;
A239 � R3Y0:38R3Y0:28R3B0��4�;
D359 � R3Y0:11RB0��2�: �24�

The indices of the selected C� positions belonging to the chain

D are

basal : L187 � �3 3 0 1 4 2; �2�c0 ;
D359 � ��1 �2 �1 �1 �1 �2; �2�c0 ;
A239 � ��3 �1 0 �2 �2 0; �4�c0 ; �25�

lateral : K207 � ��3 �4 �1 �1 �4 �2; �3�c0 ;
G282 � ��5 �3 1 �3 �5 0; �3�c0 ;
E339 � �0 0 �1 0 0 0; �3�c0 : �26�

L187 is not actually a folding point and is simply a transition

point to the neighbouring N-terminal form.

5.3. The C-terminal form

This form ranges from Val378 to Pro525. It has a terminal

loop similar to the one occurring in the trans ring. It is now

V378 that connects the intermediate and the C-terminal forms.

It is included here together with A503 because both are mirror

images of each other in projection and are in an off-centre

scaling relation by a factor 0.246 . . . with respect to the basal

folding point E461. As can be seen from Fig. 4(b), in the axial

projection E461 is in a scaling relation with the position I489.

Moreover, the z coordinates of these four positions have

integral values and could therefore be connected by the

parabolic transformation Pc, once their equivalence to posi-

tions of the type B(n) = (1 . . . 1,n)c has been expressed. This

setup leads to fairly high indices, which can be avoided by

converting to an equivalent local basis, as performed in a

previous case. We now de®ne the new Z-module basis of Mc by

�ac00 ; cc00 � � ��Mac; cc�; �M � 0:643 . . . =0:862 . . . � 0:745 . . .

�27�

With respect to the new basis, the position B00(n) has the same

indices as B(n) in the original basis (ac, cc), and the parabolic

transformation Pc0 0 has the same matrix representation as Pc,

B00�n� � �1 1 1 1 1 1; n�c00 � Sÿ1
0:86S0:64�1 1 1 1 1 1; n�c

Pc00 �ac00 ; cc00 � � Pc�ac; cc�:

We now have the structural relations

E461 � R3B00�0�; I489 � R3Sÿ1
0:80B00��1�: �29�

Despite the mutual relations indicated at the beginning, the

point-group equivalence of V378 and A503 with E461 and

I489 could not be proved.

The situation of another set of form-limited folding posi-

tions (P525, D473, Q432, K425) is simpler because these are

co-planar. They all have the same (ideal) z coordinate n7 = ÿ1
2

(see Fig. 4b). P525 is at a vertex of the heptagonal channel and

is scaled by S0.35 from B00(�12) as indicated in Fig. 4(b) by the

dashed lines of the smaller {7/3} star polygon. The other

positions Q432, K425, D437 are along the lateral external

boundary and follow from B(�12) by off-centre scalings with

factors ÿ0.35 . . . , 0.35 . . . and (0.35 . . . )2, respectively. In fact,

these off-centre scalings correspond to linear scalings. Indeed,

in particular

K425 � Y0:28R3B��12�;
Q432 � my�K425�;
D473 � Yÿ1

0:38�K425�: �30�

Knowing these relations, the indices of the height positions

labelled in Fig. 4(b) can be derived,

basal : V378 � ��1 2 �3 1 0 0; �2�c00 ;
E461 � �0 0 �1 0 0 0; 0�c00 ; �31�

lateral : P525 � �1 2 0 0 2 1; �12�c00 ;
D473 � ��3 �1 �3 �2 �1 �3; �12�c00 ;
Q432 � ��4 1 �5 0 �3 �2; �12�c00 ;
K425 � ��2 �3 0 �5 1 �4; �12�c00 ; �32�

additional : I489 � �0 �1 0 �1 0 0; �1�c00 ;
A503 � �0 1 �3 2 �1 0; �1�c00 : �33�



6. The co-chaperonin GroES

The role of the extremal lateral point A(n) in GroEL is taken

over in GroES by E(n), which in the basis (as, cs) of the

Z-module Ms [see (4)] has the same corresponding indices:

E(n) = (�1 �1 �1 �1 �1 �1, n)s. The structural compatibility between

GroEL and GroES appears in a clear way when expressing the

position E(0) at the interface between the two co-chaperonins

with respect to their bases (ac, cc) and (as, cs), respectively,

E�0� � ��1 �1 �1 �1 �1 �1; 0�s � �2 0 1 1 0 2; 0�c;
B��4� � �1 1 1 1 1 1; �4�c � �1 2 1 1 2 1; �6�s;

E��6� � Sÿ0:69B��4�: �34�

6.1. The N/I-combined form

Three forms have been derived in part I for GroES: an

N-terminal form, an intermediate form and a C-terminal form.

From the point of view of folding, however, the ®rst two must

be considered together, in an N/I-combined form, as can be

seen by considering the three basal positions A31, G52, E53,

the two lateral positions I25, E50 and the two positions V6 and

G62 which are basal and lateral for the N-terminal form and

the intermediate form, respectively (see Fig. 5). Looking at

their z coordinates, it can be deduced that I25 and E50 belong

together as do the remaining ®ve positions. For the ®rst two

positions, the following structural relation is found:

E50 � R2S0:69S0:24Pÿ2
s Rÿ3�I25�: �35�

The other ®ve are also at point-group equivalent positions:

G52 � R2S0:24E��3�; E53 � R2S0:30E��3�;
G62 � Rÿ1Sÿ0:69E��2�; V6 � R3Sÿ0:69�G62�;
A31 � RYÿ1

0:38R2S0:24E�0�; �36�
where Y0.38 is a linear scaling of the y coordinate by the scaling

factor indicated. The same transformation can also be

expressed as an off-centre scaling at E along the edge of the

star heptagon {7/2} by a factor 0.4450 . . . The indices of these

folding points are

I25 � �0 0 1 0 0 0; �12�s; E50 � ��5 1 �5 0 �3 �3; �52�s;
A31 � ��1 �1 �1 0 �1 �2; 0�s; G52 � �1 �1 1 0 0 0; �3�s;
E53 � ��2 1 �2 0 �1 �1; �3�s; G62 � �2 1 1 2 0 2; �2�s;
V6 � ��7 2 �7 0 �4 �4; �2�s: �37�

6.2. The C-terminal form

This form is centred in height with respect to the previous

combined forms and has the normal heptagonal prism

boundaries. Despite the good ®tting of the chain segments into

the indexed form, the deviations between observed and ideal

C� positions (see Fig. 6) are larger than in most of the other

cases, in particular for the positions D79 and S89. If this was

the rule, this approach would not appear to be meaningful. In

the present case, however, the ideal positions of the vertices of

the form (implying that they are at the same time basal and

lateral) could explain the corresponding sharp folding of the

chain. The indices of these form-con®ned folding points are

Y71 � �1 2 1 0 2 2; �1�s; D79 ' ��1 �1 0 0 �1 0; �1�s;
G62 � ��2 0 �2 0 �1 �1; �2�s; S89 ' �1 2 1 0 2 2; �2�s;
A97 � �0 �1 �1 0 0 �1; �2�s: �38�

These positions are point-group equivalent as can be seen

from the following structural relations, all expressed with

respect to E��2�, so that the connection with the folding points

of the previous forms becomes evident [see (36)],
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Figure 5
Correlated folding points of the N/I-combined form of GroES (where I
indicates intermediate). The lateral folding points, sharing the planar
heptagram of the form (I25 and E50), differ in their axial coordinates by
an integer �z = 2. The basal folding points (E53, G52 with n7 = ÿ4 and
A31 at z = 0) have planar indices related by integral scale-rotations. The
two other positions G62 and V6, which are in the respective forms both
planar and lateral, are in a {7/2} star-polygon relation and are point-group
equivalent with the other folding points. G62 is a limit point shared by the
intermediate form and by the C-terminal form (see Fig. 6).
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Y71 � R2Sÿ0:35E��1�; S89 ' R2Sÿ0:35E��2�;
A97 � Rÿ1S0:80E��2�; D79 ' Rÿ2S0:80E��1�;
G62 � R2Sÿ0:69E��2�: �39�

Note that G62, which is a position shared by the two forms of

GroES, is not presented in (37) and (38) with the same indices,

because in Figs. 5 and 6 different chains have been selected for

graphical reasons.

7. GroEL polymorphism: ATP/ADP-binding sites and
folding points

There are two main consequences for GroEL of the formation

of a complex with GroES.

(i) A change in the folding of the chains A to G in the cis

ring, with a corresponding breaking of the dyadic symmetry

between the cis and the trans rings of GroEL.

(ii) The elimination of the original ADP/ATP-binding sites

from the trans ring in the asymmetric (complexed) state.

These facts imply a strong correlation between molecular

forms, nucleotide binding and the alternative chain folding

known as chain polymorphism. The existence of non-trivial

relations between chain polymorphism and symmetry is

suggested by the many form properties shared by the trans and

the cis rings in the asymmetric state pointed out and

summarized in part I. At the atomic level the following two

questions naturally arise.

(i) What is the relation between the ATP/ADP-binding sites

and the symmetry of the form where the nucleotide is

embedded? In particular: what is the relation between the

ATP/ADP positions and the point-group-correlated folding

points?

(ii) What happens to form-con®ned folding points by the

transition to an alternative form of the chain?

Within the limits of the present paper it is not possible to give

a full answer to these questions. In the two following sub-

sections it is only intended to suggest that the present

approach represents an appropriate method for discussing

these questions.

Figure 6
C-terminal form of GroES. The correlated folding points deviate from
ideal indexed positions more than in previous cases, but have the
remarkable property of being (approximately) at the vertices of the form
itself and are both basally and laterally con®ned.

Figure 7
The binding sites of the nucleotides ADP and ATP are shown in the cis
ring of GroEL±GroES±(ADP)7 (PDB code 1aon) on the left and of
GroEL±ATP
S (PDB code 1der) on the right. Despite the different
folding, in both cases the bound magnesium ion, indicated by Mg, is
related to the position A labelling an external boundary of GroEL (see in
particular Figs. 1 and 2 of part I) by a star heptagon {7/2} with the same
mid-height z coordinate of the corresponding form as the folding point
S43. The latter is at the boundary of the same channel which is related by
the star heptagon {7/3} to the position B, opposite A. Accordingly, Mg and
S43 conserve the same integral scale-rotation relation during the
polymorphic transformation.



7.1. Nucleotide-binding sites

In both GroEL states, the symmetric uncomplexed and the

asymmetric complexed state, the nucleotide-binding site is in

close contact with the equatorial subunits of the N- and

C-termini of a chain (Xu et al., 1997). This implies that the

corresponding terminal forms should be considered in the

complexed and the uncomplexed cases (Figs. 1a and 1b, and

4a and 4b). Here, only the N-terminal forms are compared

(Fig. 7).

The ®rst observation is that both forms have the same

lateral con®nement with a central heptagonal channel scaled

by Sÿ0.35 with respect to the external enclosing heptagon (see

Fig. 1a and 1b). Both have S43 at a vertex position of the

channel at a mid-height of the corresponding form: n7 = ÿ1 if

complexed and n7 = ÿ3
2 if uncomplexed.

The second observation is that the bound Mg2+ ion plays a

similar role for the nucleotides as the C� for the amino acids

and occurs in the same equatorial plane as S43 (Janner,

2003b).

Finally, in both states the Mg2+ ions are related to the A

heptagon as in a star polygon {7/2}, the reverse of the B

heptagon of the external boundary.

All these properties are the consequence of the structural

relation

Mg � Sÿ0:69Sÿ1
0:35�S43� �40�

between a folding point at a form boundary and a nucleotide-

binding position at the magnesium ion position Mg in both the

complexed and the uncomplexed states. The indices corre-

sponding to the positions labelled in Fig. 7 are given by

uncomplexed : S43 � �1 2 0 0 2 1; �1�t; Mg � �1 �1 1 �1 1 0; �1�t
complexed : S43 � �1 2 0 0 2 1; �32�c; Mg � �1 �1 1 �1 1 0; �32�c:

�41�

7.2. Correlated folding points and chain polymorphism

The previous subsection gave an example of a correlated

folding point (S43) which conserves its character during the

polymorphic transition (Figs. 7 and 8). This is, however, not

the general case. In this subsection, another type of conser-

vation is exempli®ed.

Considered are the positions A2, S43, K142, and A356. In

the uncomplexed state all are lateral folding points with a

heptagrammal ordering with integral and half-integral axial

indices n7. A similar type of heptagrammal ordering is

observed for these positions in the complexed state. Only A2

and S43 remain at the conserved boundary of the central

channel, whereas K142 and A356, instead of being at the

vertices of heptagons in a reverse orientation, in the

complexed state are at the vertices of a star heptagon {7/2} of

different size and different orientation. Moreover, in the

polymorphic transition the z coordinates with an integral

value change into a half-integral one and vice versa.

It is not expected that this behaviour re¯ects a general

situation. Typically in Figs. 1(a) and 2(a) the neighbouring

positions D140 and T357 have been selected and not K142 and

A356, as here. This underlines the complexity of the order of

the GroEL±GroES chaperonin, where certainly many more

structural relations exist than those analyzed in this paper.

8. Concluding remarks

This paper does not pretend to solve the general problem of

protein folding. The present approach is interpretative,

phenomenological and non-predictive. Furthermore, only a

given type of folding points has been analyzed: those at the

boundaries of prismatic molecular forms having vertices with

integral coordinates related by scale-rotation transformations

represented by integral invertible matrices.

The atomic order is very complex, as expected. Part of the

structure re¯ects an abstract higher dimensional crystallo-

graphic order and this is unexpected. The higher dimensional
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Figure 8
Folding points which are lateral form boundaries and point-group
equivalent in the cis ring of the uncomplexed GroEL (PDB code 1der,
shown in the upper part) are still point-group equivalent in the
complexed state (PDB code 1aon, shown in the lower part), despite the
change in folding evident from the projections perpendicular to the
sevenfold axis. A2 and S43 remain at the boundary of the central channel
(with same radial size but different heights). A356 and K142, which in the
uncomplexed state have a radial extremal position (corresponding to A
and B, respectively) in the complexed state appear in projection at the
vertices of a common star heptagon {7/2}. Note that positions having
integral axial coordinates have half-integral values and vice versa. This is
possibly purely accidental.
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lattice structure appears in projection in the three-dimensional

physical space as a Z-module, as in quasi-crystals, but in the

molecular case without translations (Janner, 2001). What is

observed in the GroEL±GroES chaperonin is only a very

incomplete image of a higher dimensional symmetric object.

This image is much more incomplete than that obtained from

cut-projection in the case of quasi-crystals. This situation

requires extension of the familiar concept of symmetry to that

of structural relations, which imposes less rigid constraints.

Nevertheless, the ideal underlying crystallographic order can

be identi®ed, both at the geometric and at the algebraic levels

presented in the appendix. Conceptually, the problem is the

same as for crystals: from the geometry of forms with rational

indices, ®nd the atomic positions related by invertible integral

matrix transformations (Janner, 2001). In crystals the atomic

structure is eventually arrived at via X-ray diffraction. For

biomacromolecules, the sequence in time is reversed: starting

from an atomic structure known from X-ray diffraction,

attempts are made to characterize the architecture in terms of

a possible (higher-dimensional) crystallographic order. This is,

of course, not the only reasonable way of obtaining an insight

into the biomacromolecular building principles.

APPENDIX A
A1. Algebraic integers and their geometry in the heptagonal
case

The analysis of the architecture of GroEL±GroES occurs at

two levels.

(i) The geometric level, with the identi®cation of a number

of C� positions in a heptagrammal arrangement. This allows

assignment of integral indices (n1, . . . , n7) to these special

positions expressed with respect to a Z-module basis of the

type (a, c) as given in (1).

(ii) The algebraic level, in terms of invertible integral

matrices relating heptagrammal positions. Related atomic

positions are said to be point-group equivalent.

Equivalent heptagrammal positions have z coordinates which

differ by an integral value �z. Two cases are considered:

(i) Co-planar equivalent positions: �z = 0.

(ii) Positions at z0 + �z equivalent to A(z0) = (�1, . . . , �1, z0):

�z = integer. This case is treated as (�1, . . . , �1, 0) with respect to

a z0-shifted basis (a, c).

In the second case, the parabolic transformation P with matrix

representation

P�a; c� �

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

1 0 0 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
�42�

allows the z coordinates occurring in a heptagram which differ

by integral values to be related, so that the problem is reduced

to planar equivalence. The general case has not been inves-

tigated so far.

Accordingly, in the following the discussion is restricted to a

two-dimensional rank six heptagonal Z-module and to the

corresponding planar indices (n1, . . . , n6).

Figure 9
(a) Heptagram obtained from the intersection of the two star heptagons
{7/2} and {7/3}. The indices of the vertices labelled as in other ®gures are
indicated in Table 1. (b) Extended version of the previous heptagram (in
a reverse orientation) occurring at heptagrammal folding points con®ned
by the intermediate form of cis GroEL (see Fig. 2b). The correspondence
is outlined and the ideal folding positions are indicated by double circles.
These are point-group equivalent. The other encircled vertices of this
heptagram have integral indices, but their point-group equivalence has
not been proved.

Table 1
Indexed intersection points of the heptagram in the upper part of Fig. 9.

By changing all the signs, the corresponding indices of the reverse heptagram
are obtained.

k Ak ÿCk Dk ÿEk Uk Vk

0 �1 �1 �1 �1 �1 �1 �1 �2 0 0 �2 �1 2 1 1 1 1 2 �2 0 �1 �1 0 �2 0 0 1 �1 0 1 1 0 �1 1 0 0
1 1 0 0 0 0 0 �1 �2 0 0 �2 �1 �2 0 �1 �1 �1 �1 2 0 2 1 1 2 �1 �1 �1 0 �2 �1 0 1 0 �1 1 0
2 0 1 0 0 0 0 1 0 �1 1 1 �1 1 �1 1 0 0 0 �2 0 �2 0 �1 �1 1 0 0 0 1 �1 0 0 1 0 �1 1
3 0 0 1 0 0 0 �2 �1 0 �1 �2 0 0 1 �1 1 0 0 1 �1 1 �1 1 0 1 2 1 1 1 2 �1 �1 �1 0 �1 �2
4 0 0 0 1 0 0 0 �2 �1 0 �1 �2 0 0 1 �1 1 0 0 1 �1 1 �1 1 �2 �1 0 �1 �1 �1 2 1 1 1 2 1
5 0 0 0 0 1 0 2 2 0 1 2 1 0 0 0 1 �1 1 �1 �1 0 �2 0 �2 1 �1 0 1 0 0 �1 1 0 0 0 1
6 0 0 0 0 0 1 �1 1 1 �1 0 1 �1 �1 �1 �1 0 �2 2 1 1 2 0 2 0 1 �1 0 1 0 �1 �2 0 �1 �1 �1



A1.1. Geometry of heptagrams. The simplest heptagrams

are the regular heptagon {7/1} and the star heptagons {7/2} and

{7/3} found in Coxeter (1961) and in Fig. 8 of part I. The

intersection points of these three simple cases are shown in

Fig. 9 in the direct orientation. All have integral indices, as

indicated in Table 1, with the corresponding labels Ak to Ek,

Uk and Vk, where the subscript k indicates a point rotated

counter-clockwise by an angle 2�k/7 (normally, the subscript

k = 0 is omitted). The indices of the points of the heptagram in

the reverse orientation are obtained by inverting all the signs.

Most heptagrams of the forms found in GroEL±GroES are

obtained by adding simple heptagonal patterns to these two

basic heptagrams. The more complex case of the intermediate

form in the cis ring of GroEL (see Fig. 2b) can be analyzed by

combining an extended version of the {7/2} and {7/3} star

heptagons, as shown in the lower part of Fig. 9. All the

encircled intersection points of this extended heptagram have

integral indices.

Folding points at lateral form boundaries frequently lead to

heptagrams with points on heptagonal (or star-heptagonal)

edges. Their indexing is not easy. Only few of the edge-points

can be obtained by linear scaling, as exempli®ed in Fig. 2(b)

and correspondingly in Fig. 9. Other low-index edge positions

follow from off-centre scaling centred at a vertex. Several

examples of this last case have been obtained from off-centre

scaling with scaling factor 0.246 . . . (see Figs. 1a and 1b, and

4a and 4b). Their structural meaning is still obscure, despite

the fact that the same factor also occurs for one of the two

planar scalings of the star heptagon {7/3} and that, in general,

it ensures low indices.

A1.2. Point-group transformations. Discussed here are the

automorphisms of the two-dimensional Z-module M which

play a role in the structural relations derived in this paper for

C� positions in GroEL±GroES at the boundaries of molecular

forms. Some of these occur in the point groups of the enclosing

forms and have been given in the appendix of part I. In

particular, this is the case for the rotation R by an angle of 2�/7

around the z axis and the re¯ection m that leaves the x axis

(and in three dimensions also the z axis) invariant. Scaling

transformations occurring in the star heptagons {7/2} and {7/3}

have also been indicated, together with a couple of other

cases.

Here, the general case of a two-dimensional planar scaling

with scaling factor � leaving the heptagonal Z-module invar-

iant and represented by a six-dimensional integral matrix S� is

parameterized by three integers t0, t1, t2 according to

S��t0;t1;t2�

�

t0 ÿ t1 t1 ÿ t2 t2 0 ÿt2 ÿt1 � t2

0 t0 ÿ t2 t1 t2 ÿt2 ÿt1

ÿt1 � t2 t1 ÿ t2 t0 t1 0 ÿt1

ÿt1 0 t1 t0 t1 ÿ t2 ÿt1 � t2

ÿt1 ÿt2 t2 t1 t0 ÿ t2 0

ÿt1 � t2 ÿt2 0 t2 t1 ÿ t2 t0 ÿ t1

0BBBBBBBB@

1CCCCCCCCA
; �43�

where the scaling factor is given by

��t0; t1; t2� � t0 � 2 t1 cos
2�

7
� 2 t2 cos

4�

7
: �44�

The condition detS��t0;t1;t2� = 1 ensures that the inverse scaling

matrix also has integral entries. The indices of the transformed

vertices S�Ak of the heptagon appear as the kth column vector

of the matrix S�. A general point with Cartesian coordinates

(x, y) is transformed according to

S��x; y� � ��x; �y�: �45�
For |ti| < 4 and 0 < � < 1, 21 different solutions are found. If it is

furthermore required that the scaling matrices and their

inverse have entries with maximal absolute value 5 (as

suggested by B. Souvignier), the number of solutions is

reduced to 12, as indicated in Table 2.

There is a direct relation between these automorphisms and

the group of units of the cyclotomic ®eld F (�) with

� = exp(2�/7) (see, for example, Cohn, 1962), but this aspect is

not discussed here. For self-similar quasi-crystals, this group of

units must be enlarged by linear scaling (Janner, 1997).

Moreover, scaling factors of both signs occur, despite the fact

that the Euclidean point-group symmetry of the regular

heptagon does not contain the total inversion.

The linear scalings considered here are automorphisms of

M which only scale one of the Cartesian coordinates of a point

(x, y) in the plane

X��x; y� � ��x; y�; Y��x; y� � �x; �y�: �46�
Their product is the planar scaling S� = X�Y�. As previously

discussed Janner (2002) and in the appendix of part I, linear

scalings demonstrate that the positions labelled U and V in the

heptagram {7/2} [ {7/3} of Fig. 9 are point-group equivalent

with all the other intersection points of this heptagram.

From the parametric representation of S��t0;t1;t2� given above

one derives by factorization a corresponding parameterization

of X��t0;t1;t2� and Y��t0;t1;t2�:

Acta Cryst. (2003). D59, 795±808 Janner � Heptagrammal characterization of GroEL±GroES±(ADP)7 folding 807

research papers

Table 2
Parameter values and corresponding scaling factors for integral planar
scalings S��t0;t1;t2� and linear scalings X��t0;t1;t2�, Y��t0;t1;t2�, with entries in S�
and Sÿ1

� of absolute value not larger than 5.

The linear scaling possibility is marked by *. For each scaling factor the
number of times its absolute value occurs in the structural relations derived so
far is also given for the GroEL trans and cis rings, for GroES and the bound
Mg ion, even if these values give a global impression only.

t0 t1 t2 �(t0, t1, t2) Heptagram trans cis GroES Mg Total

1 0 2 0.1099 . . . * 1 1
ÿ2 1 ÿ2 0.1370 . . .
ÿ1 2 3 0.1588 . . .

1 ÿ1 ÿ1 0.1980 . . .
ÿ1 1 0 0.2469 . . . {7/3} 3 3

1 ÿ2 ÿ4 0.2862 . . . * {7/2} [ {7/3} 2 3 5
2 ÿ1 1 0.3079 . . . 1 1
0 1 2 0.3568 . . . {7/3} 4 2 2 8
ÿ3 2 ÿ2 0.3840 . . . * {7/2} [ {7/3} 1 2 1 4

0 0 ÿ1 0.4450 . . .
1 0 1 0.5549 . . . 1 1
1 ÿ1 ÿ2 0.6431 . . . 1 1
ÿ1 1 ÿ1 0.6920 . . . 7=2 2 2 3 1 8

0 1 1 0.8019 . . . 1 1 2 4
3 ÿ1 2 0.8629 . . . 4 4
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X��t0;t1;t2� �
1

2

1� t0 ÿ 2t1 � t2 t1 ÿ 2t2 t2 t2 t1 ÿ 2t2 1� t0 ÿ 2t1 � t2

ÿt1 1� t0 ÿ 2t2 t1 � t2 t1 � t2 ÿ1� t0 ÿ 2t2 ÿt1

ÿ2t1 � t2 t1 ÿ t2 1� t0 � t1 ÿ1� t0 � t1 t1 ÿ t2 ÿ2t1 � t2

ÿ2t1 � t2 t1 ÿ t2 ÿ1� t0 � t1 1� t0 � t1 t1 ÿ t2 2t1 � t2

ÿt1 ÿ1� t0 ÿ 2t2 t1 � t2 t1 � t2 1� t0 ÿ 2t2 ÿt1

ÿ1� t0 ÿ 2t1 � t2 t1 ÿ 2t2 t2 t2 t1 ÿ 2t2 1� t0 ÿ 2t1 � t2

0BBBBBB@

1CCCCCCA �47�

and

Y��t0;t1;t2� �
1

2

1� t0 ÿ t2 t1 t2 ÿt2 ÿt1 1ÿ t0 � t2

t1 1� t0 t1 ÿ t2 ÿt1 � t2 1ÿ t0 ÿt1

t2 t1 ÿ t2 1� t0 ÿ t1 1ÿ t0 � t1 ÿt1 � t2 ÿt2

ÿt2 ÿt1 � t2 1ÿ t0 � t1 1� t0 ÿ t1 t1 ÿ t2 t2

ÿt1 1ÿ t0 ÿt1 � t2 t1 ÿ t2 1� t0 t1

1ÿ t0 � t2 ÿt1 ÿt2 t2 t1 1� t0 ÿ t2

0BBBBBB@

1CCCCCCA: �48�

The possible values of the parameters are restricted by the

conditions:

det X��t0;t1;t2� � 1; det Y��t0;t1;t2� � 1; t0 odd; t1; t2 even:

�49�

Only three of the 21 possible parameter values for |ti| < 4

satisfy these conditions. In Table 2 these cases are marked with

an asterisk.

The careful reading of the ®rst manuscript by B. Souvignier

and his pertinent suggestions have greatly helped the author

to improve the presentation. Thanks are expressed to R. de

Gelder for valuable remarks and to Annalisa Fasolino for

stimulating discussions.

References

Boisvert, D. C., Wang, J., Otwinowski, Z., Horwich, A. L. & Sigler,
P. B. (1996). Nature Struct. Biol. 3, 170±177.

Braig, K., Otwinowski, Z., Hedge, R., Boisvert, D. C., Joachimiak, A.,
Horwich, A. L. & Sigler, P. B. (1994). Nature (London), 371, 578±
586.

Cohn, H. (1962). A Second Course in Number Theory. New York:
John Wiley.

Coxeter, H. S. M. (1961). Introduction to Geometry. New York: John
Wiley.

Janner, A. (1997). GROUP21 Physical Applications and Mathema-
tical Aspects of Geometry, Groups and Algebra, Vol. 2, edited by
H.-D. Doebner, W. Scherer & C. Schulte, pp. 949±953. Singapore:
World Scienti®c.

Janner, A. (2001). Acta Cryst. A57, 378±388.
Janner, A. (2002). Struct. Chem. 13, 279±289.
Janner, A. (2003a). Acta Cryst. D59, 783±794.
Janner, A. (2003b). Proteins, 51, 126±136.
Xu, Z., Horwich, A. L. & Sigler, P. B. (1997). Nature (London), 388,

741±750.


